Japan’s Plan for Centimeter-Resolution GPS – IEEE Spectrum

constellation of seven satellites—enough for sustainable operation and some redundancy

The four satellites will follow an orbit that, from the perspective of a person in Japan, traces an asymmetrical figure eight in the sky. While the orbit extends as far south as Australia at its widest arc, it is designed to narrow its path over Japan so that at least one satellite is always in view high in the sky—hence the name quasi-zenith. This will enable users in even the shadowed urban canyons of Tokyo to receive the system’s error-correcting signals.

“Errors can be caused, for example, by the satellite’s atomic clock, orbital shift, and by Earth’s atmosphere, especially the ionosphere, which can bend the signal, reducing its speed,” says Sato.

To correct the errors, a master control center compares the satellite’s signals received by the reference stations with the distance between the stations and the satellite’s predicted location. These corrected components are compressed from an overall 2-megabit-per-second data rate to 2 kilobits per second and transmitted to the satellite, which then broadcasts them to users’ receivers.

via Japan’s Plan for Centimeter-Resolution GPS – IEEE Spectrum.

New Indoor Navigation Technologies Work Where GPS Can’t – IEEE Spectrum

Q-Track: In this special zone [near field], the emanations from a radio antenna are rather peculiar. The electric and magnetic fields do not rise and fall in lockstep, for example, as is normally the case with radio waves. And the difference in their timing (their relative phase) is, conveniently enough, a function of the distance from the transmitting antenna.

DecaWave: If power levels are kept low enough, ultrawideband transmissions, being so thinly spread out in frequency, can share the airwaves with conventional radio services without causing interference. Those services have long had to cope with the incidental energy given off by electric motors, automobile ignition systems, and all sorts of digital gadgets that aren’t intended to transmit radio waves. Low-power ultrawideband transmissions are no more menacing, which is why radio authorities around the world are now embracing this technology.

via New Indoor Navigation Technologies Work Where GPS Can’t – IEEE Spectrum.