

IEEE UPP Leaders Summit
Cathy Wu
UC Berkeley, EECS
2017-05-24

Optimization & algorithms

Convex optimization
Combinatorial optimization
Machine learning
Control theory
Reinforcement learning

Multi-agent systems

Modeling framework Goals & incentives Learning

Urban systems

Mobility
Energy, water, waste
Urban planning
CityOS, IoT

Policy gradient for multi-agent reinforcement learning

Multi-agent systems

Optimization & algorithms

Demand shaping via ridesharing

Congestion control via autonomous vehicles

System architecture for mixed-autonomy RL

Stability of mixed-autonomy traffic

(Simple) multi-lane modeling

Urban systems

Scalable demand inference

Energy impacts of vehicle automation

5

What happens between 0% and 100% penetration of autonomous vehicles?

Problem statement

How can a **team** of autonomous vehicles in **mixed-autonomy** traffic **minimize system-level energy** consumption?

Problem setup

Linear dynamics: $\ddot{\tilde{x}}_i = k_p(\tilde{x}_{i-1} - \tilde{x}_i) + k_d(\dot{\tilde{x}}_{i-1} - \dot{\tilde{x}}_i) - k_v(\dot{\tilde{x}}_i)$

Robot control: $\ddot{\tilde{x}}_i = k_{p_r}(\tilde{x}_{i-1} - \tilde{x}_i) + k_{d_r}(\dot{\tilde{x}}_{i-1} - \dot{\tilde{x}}_i) - k_{v_r}(\dot{\tilde{x}}_i)$

Stability for mixed-autonomy traffic

Motivation: Stability is a useful property for understanding energy use.

Goal: How many vehicles can one autonomous vehicle stabilize?

Related work: Infinite (realistically, 40) [Cui, et al., IV, 2017]

Contributions:

- Additionally considers safety and efficiency.
- Optimization procedure for studying single-lane mixed-autonomy traffic while maintaining safety, efficiency, and stability.
- Derivation of safety condition.
- Frequency domain analysis of stability and safety.

Definition (String stability)

A system $T(\cdot)$ is **string stable** if and only if $|T(j\omega)| \leq 1, \forall \omega$. Equivalently, $||T(j\omega)||_{\infty} \leq 1$.

Frequency domain analysis

Stability condition:

$$\|\prod_{i} T_{i}(\cdot)\|_{\infty} \leq 1$$

$$\implies n_{stable} = \min_{\omega} -\frac{\log|T_{R}(j\omega)|}{\log|T_{H}(j\omega)|}$$

Safety/performance condition:

$$\Delta_{-} < h_{R}(t) < \Delta_{+}, \ \forall t > 0$$

$$\implies n_{safe} = \min_{\omega} \frac{\log \eta - \log|1 - T_{R}(j\omega)|}{\log|T_{H}(j\omega)|}$$

Overall optimization problem

$$n^* = \max_{T_R} \min(n_{stable}, n_{safe})$$

s.t.
$$T_R(s) = \frac{k_{dr}s + k_{p_r}}{s^2 + (k_{dr} + k_{vr})s + k_{p_r}}$$

11

Recent and ongoing work

Goal: Model and understand the effect of lane changes on congestion and energy consumption.

Delay (ms):

Goal: Enable reinforcement learning for studying complex traffic optimization problems.

