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Energy impacts of vehicle automation

| Seting: now, no automation Setting: 2050, full automation

US Energy Consumption by Sector
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““Have our cake and eat it too” “Dystopian nightmare”
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[US Energy Information Agency; Wadud et al., 2016]



What happens between 0% and 100%
penetration of autonomous vehicles?

YProblem statement

How can a team of autonomous vehicles
= 1n mixed-autonomy traffic minimize
system-level energy consumption?







Problem setup
Human driven cars EE—————_
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[Wu et al., In submission, 2017] Image credit: Florian Brown-Altvater



Stability for mixed-autonomy traffic
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. Motivation: étabﬂity 1s a useful property for understanding energy use.
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Goal: How many vehicles can one autonomous vehicle stabilize?

) \
Related work: Infinite (realistically, 40) [cui, etal, v, 2017]

Contributions: :
* Additionally considers safety and efficiency. oo

* Optimization procedure for studying single-lane mixed-autonomy traffic while
maintaining safety, efficiency, and stability.

e Derivation of safety condition.
* Frequency domain analysis of stability and safety.

Definition (String stability)

A system T(-) is string stable if and only if |T'(jw)| < 1, Vw.
Equivalently, ||T'(jw)||,, <1

'Wu et al., In submission, 2017] b



Frequency domain analysis

Stability condition:
LT =1
—> e = min, —{SHFA0)

Safety/performance condition:

A_ < hgr(t) <Ai, Vt>0
log n—log|1—Tr(jw)|

—> Nsafe = MIN,

log| T (jw)]
Overall optimization problem
n* = max min(nstablea nsafe)
TR
]Cdf,ns -+ ]-Cp,r

S.t. TR(S) —

s2 + (kay + kyr)s + kp.,

[Wu et al., In submission, 2017]



Stability of fundamental diagram at varying robot penetration rates
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Recent and ongoing work

Goal: Model and understand the
effect of lane changes on congestion
and energy consumption.
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Goal: Enable reinforcement
learning for studying complex e
traffic optimization problems.

Loading additional-files from 'debug/cfg/two-lane-two-controller-200m2l.add.xml'... done {9ms).
Loading done.
Simulation started with time: 0.00

‘debug/cfg/two-lane-two-controller-200m2l.sumo.cfg' loaded. - 12| [x:191.55, y:74.50
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