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Outline

Route flow estimation problem
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The root of all traffic evils

We have little understanding of what’s going on in the road network.

Estimation
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Traditional approaches to traffic estimation

Sparse static sensors

+
Equilibrium models
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This talk: data-driven estimation of route flow

Sparse static sensors

→ observed link flow

+

Cellular network sensors

→ cellpath flow
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Problem statement: route flow estimation

Route flow estimation problem

Given

I Road network, origins, cells

I Top routes between origin-destination (OD) pairs

I Cellpath flows, f

I OD flows, d

I Observed link flows, b

Recover

I Flow along routes, x

Network topology, routes, cell towers

Cellular data

Traffic cameras, radars, detectors

Convex

optimization

formulation

Projected Route

flow

solution

Map

Cellpath flow

Link flow

Convex

optimization

formulation

Solver

OD flowCensus, travel surveys, OD models
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Problem setup

Cell partitioning = Voronoi

Cellpaths contiguous

Cellpaths well-posed

Static
Noiseless
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Intermission 1: cellular networks crash course

I Not GPS

I Cell towers spaced 1
4 −

1
2 miles apart (dense urban areas) to 1-2 miles

apart (suburbia)

I Connection to a tower depends on signal strength, current load of
nearby towers, hysteresis, etc.

I Cellular signaling data
I Handovers (HO)
I Location updates (LU)
I Call detail records (CDR)
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Example problem setup

Route flow estimation problem 10



Example problem setup

Route flow estimation problem 10



Example problem setup

Route flow estimation problem 10



Intermission 2: crash course on constrained optimization

Constrained quadratic program (QP):

min 1
2‖Ax − b‖2

2

s.t. Ux = f , x ≥ 0

General projected descent method

Algorithm 1 Proj-descent(·)
Require: initial point x in the feasible set X .
1: while stopping criteria not met do
2: Determine a descent direction ∆x
3: Step in that direction: x+ := x + α∆x
4: Projection: x := ΠX (x+)
5: end while
6: return x
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Technical contributions of our work

Constrained quadratic program (QP):

min 1
2‖Ax − b‖2

2

s.t. Ux = f , x ≥ 0

Nice structure of constraints: block simplex
Projection step transformable into ordering constraints:

x = x0 + Nz ≥ 0 ⇐⇒ 0 ≤ z1 ≤ · · · ≤ zn−1 ≤ 1

Identical to isotonic regression with complete order (1990)

minimize
∑n

i=1 wi (yi − xi )
2

subject to x1 ≤ x2 ≤ · · · ≤ xn

Solvable via Pool adjacent violators (PAV) algorithm solves this in O(n)
(1972, 1984)
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Experiment: Los Angeles network =⇒ 90% accuracy

I Network: 10,538 nodes, 20,476 links

I 1,033 observed links (5% coverage); 1,000 cells

I 31,836 origin-destination (OD) pairs; 321 ODs

I 295,650 routes (up to 50 routes per OD pair)
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Conclusions

I Route flow estimation has received little
attention due to data limitations

I Cellular network data is a promising
data source

I Route flow estimates will enable short
time horizon applications such as
prediction and control

I Next up: experiments with AT&T data

Network topology, routes, cell towers

Cellular data

Traffic cameras, radars, detectors

Convex

optimization

formulation

Projected Route

flow

solution

Map

Cellpath flow

Link flow

Convex

optimization

formulation

Solver

OD flowCensus, travel surveys, OD models

I Get in touch: cathywu@eecs.berkeley.edu; website: wucathy.com
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