

Cellpath: state estimation of static traffic networks via convex optimization

Cathy Wu¹ Jérôme Thai¹ Steve Yadlowsky¹ Alexei Pozdnoukhov² Alexandre Bayen^{1,2,3}

 ¹Department of Electrical Engineering & Computer Sciences University of California at Berkeley
²Department of Civil and Environmental Engineering University of California at Berkeley
³Director, Institute of Transportation Studies (ITS)

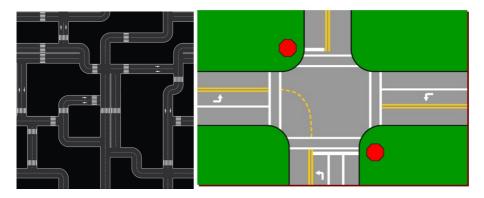
April 4, 2015

Outline

Route flow estimation problem

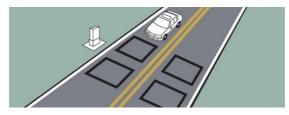
The root of all traffic evils

We have little understanding of what's going on in the road network.



Estimation

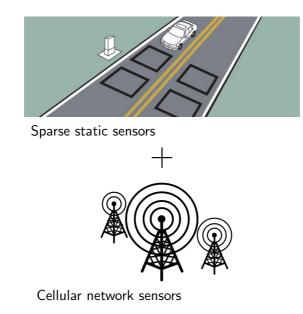
Traditional approaches to traffic estimation



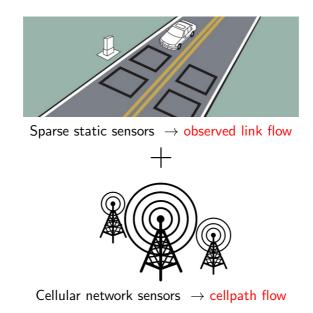
Sparse static sensors

Equilibrium models

This talk: data-driven estimation of route flow



This talk: data-driven estimation of route flow



Problem statement: route flow estimation

Route flow estimation problem

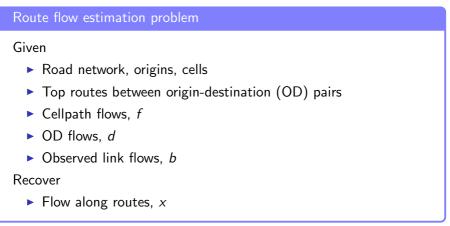
Given

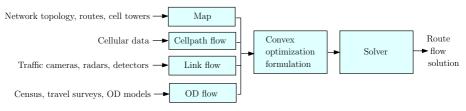
- Road network, origins, cells
- Top routes between origin-destination (OD) pairs
- Cellpath flows, f
- OD flows, d
- Observed link flows, b

Recover

Flow along routes, x

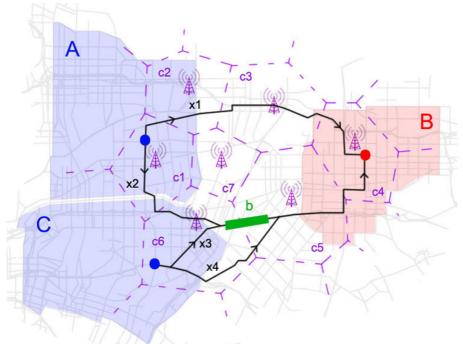
Problem statement: route flow estimation





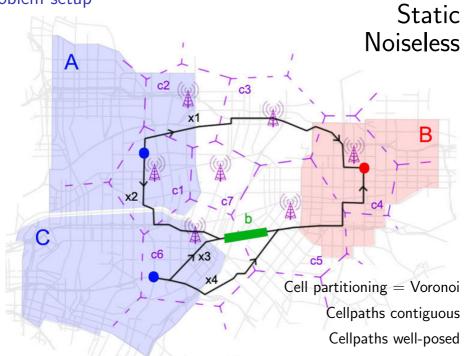
Route flow estimation problem

Problem setup



Route flow estimation problem

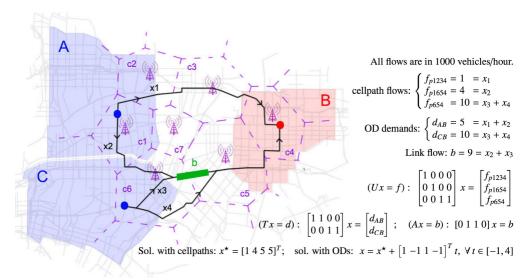
Problem setup



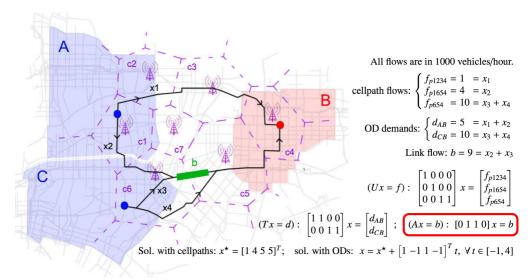
Intermission 1: cellular networks crash course

- Not GPS
- ▶ Cell towers spaced $\frac{1}{4} \frac{1}{2}$ miles apart (dense urban areas) to 1-2 miles apart (suburbia)
- Connection to a tower depends on signal strength, current load of nearby towers, hysteresis, etc.
- Cellular signaling data
 - Handovers (HO)
 - Location updates (LU)
 - Call detail records (CDR)

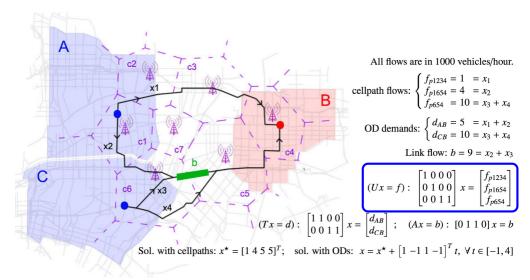
Example problem setup



Example problem setup



Example problem setup



Constrained quadratic program (QP):

min
$$\frac{1}{2} \| Ax - b \|_2^2$$

s.t. $Ux = f, x \ge 0$

Constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| Ax - b \|_2^2 \\ \text{s.t.} & Ux = f, \ x \ge 0 \end{array}$$

General projected descent method

Algorithm 1 Proj-descent(\cdot)

Require: initial point x in the feasible set \mathcal{X} .

Constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| Ax - b \|_2^2 \\ \text{s.t.} & Ux = f, \ x \ge 0 \end{array}$$

General projected descent method

Algorithm 1 Proj-descent(.)

Require: initial point x in the feasible set \mathcal{X} .

1

1: while stopping criteria not met do

Constrained quadratic program (QP):

min
$$\frac{1}{2} \|Ax - b\|_2^2$$

s.t. $Ux = f, x \ge 0$

General projected descent method

Algorithm 1 Proj-descent(\cdot)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx

Constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| Ax - b \|_2^2 \\ \text{s.t.} & Ux = f, \ x \ge 0 \end{array}$$

General projected descent method

Algorithm 1 Proj-descent(\cdot)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$

Constrained quadratic program (QP):

min
$$\frac{1}{2} \|Ax - b\|_2^2$$

s.t. $Ux = f, x \ge 0$

General projected descent method

Algorithm 1 Proj-descent(\cdot)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$

Constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| Ax - b \|_2^2 \\ \text{s.t.} & Ux = f, \ x \ge 0 \end{array}$$

General projected descent method

Algorithm 1 Proj-descent(\cdot)

Require: initial point x in the feasible set \mathcal{X} .

1

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while

6: return x

Constrained quadratic program (QP):

min
$$\frac{1}{2} \|Ax - b\|_2^2$$

s.t. $Ux = f, x \ge 0$

Constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \|_2^2 \\ \text{s.t.} & \boldsymbol{U} \boldsymbol{x} = \boldsymbol{f}, \ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

Nice structure of constraints: block simplex

Constrained quadratic program (QP):

min
$$\frac{1}{2} \| Ax - b \|_2^2$$

s.t. $Ux = f, x \ge 0$

Nice structure of constraints: block simplex Projection step transformable into ordering constraints:

$$x = x_0 + Nz \ge 0 \quad \Longleftrightarrow \quad 0 \le z_1 \le \cdots \le z_{n-1} \le 1$$

Constrained quadratic program (QP):

 $\begin{array}{ll} \min & \frac{1}{2} \| Ax - b \|_2^2 \\ \text{s.t.} & Ux = f, \ x \ge 0 \end{array}$

Nice structure of constraints: block simplex Projection step transformable into ordering constraints:

$$x = x_0 + Nz \ge 0 \quad \Longleftrightarrow \quad 0 \le z_1 \le \cdots \le z_{n-1} \le 1$$

Identical to isotonic regression with complete order (1990)

minimize $\sum_{i=1}^{n} w_i (y_i - x_i)^2$ subject to $x_1 \le x_2 \le \cdots \le x_n$

Constrained quadratic program (QP):

 $\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \\ \text{s.t.} & \mathbf{U} \mathbf{x} = \mathbf{f}, \ \mathbf{x} \ge \mathbf{0} \end{array}$

Nice structure of constraints: block simplex Projection step transformable into ordering constraints:

$$x = x_0 + Nz \ge 0 \quad \iff \quad 0 \le z_1 \le \cdots \le z_{n-1} \le 1$$

Identical to isotonic regression with complete order (1990)

minimize $\sum_{i=1}^{n} w_i (y_i - x_i)^2$ subject to $x_1 \le x_2 \le \cdots \le x_n$

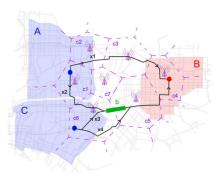
Solvable via Pool adjacent violators (PAV) algorithm solves this in O(n) (1972, 1984)

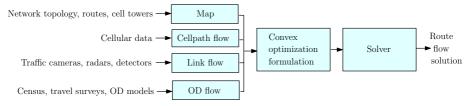
Experiment: Los Angeles network \implies 90% accuracy

- Network: 10,538 nodes, 20,476 links
- ▶ 1,033 observed links (5% coverage); 1,000 cells
- 31,836 origin-destination (OD) pairs; 321 ODs
- 295,650 routes (up to 50 routes per OD pair)

Conclusions

- Route flow estimation has received little attention due to data limitations
- Cellular network data is a promising data source
- Route flow estimates will enable short time horizon applications such as prediction and control
- Next up: experiments with AT&T data





Get in touch: cathywu@eecs.berkeley.edu; website: wucathy.com

Route flow estimation problem