Machine-Learning Maestro Michael Jordan on the Delusions of Big Data and Other Huge Engineering Efforts – IEEE Spectrum

On neural nets (deep learning):

Spectrum: If you could, would you declare a ban on using the biology of the brain as a model in computation?

Michael Jordan: No. You should get inspiration from wherever you can get it. As I alluded to before, back in the 1980s, it was actually helpful to say, “Let’s move out of the sequential, von Neumann paradigm and think more about highly parallel systems.” But in this current era, where it’s clear that the detailed processing the brain is doing is not informing algorithmic process, I think it’s inappropriate to use the brain to make claims about what we’ve achieved. We don’t know how the brain processes visual information.

On big data:

Michael Jordan: So it’s like having billions of monkeys typing. One of them will write Shakespeare.

Spectrum: Do we currently have the tools to provide those error bars [on predictions]?

Michael Jordan: We are just getting this engineering science assembled. We have many ideas that come from hundreds of years of statistics and computer science. And we’re working on putting them together, making them scalable. A lot of the ideas for controlling what are called familywise errors, where I have many hypotheses and want to know my error rate, have emerged over the last 30 years. But many of them haven’t been studied computationally. It’s hard mathematics and engineering to work all this out, and it will take time.

It’s not a year or two. It will take decades to get right. We are still learning how to do big data well.

Spectrum: What adverse consequences might await the big-data field if we remain on the trajectory you’re describing?

Michael Jordan: The main one will be a “big-data winter.” After a bubble, when people invested and a lot of companies overpromised without providing serious analysis, it will bust. And soon, in a two- to five-year span, people will say, “The whole big-data thing came and went. It died. It was wrong.” I am predicting that. It’s what happens in these cycles when there is too much hype, i.e., assertions not based on an understanding of what the real problems are or on an understanding that solving the problems will take decades, that we will make steady progress but that we haven’t had a major leap in technical progress. And then there will be a period during which it will be very hard to get resources to do data analysis. The field will continue to go forward, because it’s real, and it’s needed. But the backlash will hurt a large number of important projects.

On $1bil:

Spectrum:So are you saying that for a billion dollars, you could, at least as far as natural language is concerned, solve the problem of generalized knowledge and end up with the big enchilada of AI: machines that think like people?

Michael Jordan: So you’d want to carve off a smaller problem that is not about everything, but which nonetheless allows you to make progress. That’s what we do in research. I might take a specific domain. In fact, we worked on question-answering in geography. That would allow me to focus on certain kinds of relationships and certain kinds of data, but not everything in the world.

via Machine-Learning Maestro Michael Jordan on the Delusions of Big Data and Other Huge Engineering Efforts – IEEE Spectrum.

Leave a Reply